Class/Object

ksb.csle.didentification.verification.loss

CardinalityLoss

Related Docs: object CardinalityLoss | package loss

Permalink

class CardinalityLoss extends InformationLoss

This class implements the loss measure method named as the cardinality loss which measures the loss based on cardinality of a column.

Linear Supertypes
InformationLoss, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. CardinalityLoss
  2. InformationLoss
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new CardinalityLoss()

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. def convertColumntoArray(src: DataFrame, columnName: String): Array[String]

    Permalink

    Converts all the contents of a specific column to the array of string.

    Converts all the contents of a specific column to the array of string.

    src

    the dataframe

    columnName

    the column name

    returns

    Array[String] the number of equivalence classes

    Definition Classes
    InformationLoss
  7. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. def getCardinality(src: DataFrame, columnNames: Array[String]): Double

    Permalink

    Gets cardinality of the array of columns in 'src' dataframe

    Gets cardinality of the array of columns in 'src' dataframe

    src

    the dataframe

    returns

    Double the cardinality of the column

  11. def getCardinality(src: DataFrame, column: String): Double

    Permalink

    Gets cardinality of 'column' column in 'src' dataframe

    Gets cardinality of 'column' column in 'src' dataframe

    src

    the dataframe

    column

    the column to get cardinality

    returns

    Double the cardinality of the column

  12. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  13. def getNumEquivalence(src: DataFrame, columnNames: Array[String]): Double

    Permalink

    Gets the number of the equivalence class which is composed of referring to the columns of quasi-identifiers.

    Gets the number of the equivalence class which is composed of referring to the columns of quasi-identifiers.

    src

    the dataframe

    columnNames

    the array of quasi-identifier columns

    returns

    Long the number of equivalence classes

    Definition Classes
    InformationLoss
  14. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  15. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  16. def lossMeasure(src: DataFrame, anonymizedSrc: DataFrame, suppressedSrc: DataFrame, columnNames: Array[String]): InformationLossBound

    Permalink

    Measures the information loss based on cardinality of a column.

    Measures the information loss based on cardinality of a column.

    src

    the original dataframe

    anonymizedSrc

    the anonymized dataframe

    suppressedSrc

    the suppressed dataframe

    columnNames

    the array of column names of quasi-identifiers. The combination key is made by cross-tabulating these variables.

    returns

    InformationLossBound the measured information loss

    Definition Classes
    CardinalityLossInformationLoss
  17. def lossMeasure(src: DataFrame, anonymizedSrc: DataFrame, columnNames: Array[String]): InformationLossBound

    Permalink

    Measures the information loss of anonymized data compared to the original data.

    Measures the information loss of anonymized data compared to the original data.

    src

    the dataframe

    anonymizedSrc

    the anonymized dataframe

    columnNames

    the array of column names

    returns

    InformationLossBound the measured information loss bound

    Definition Classes
    InformationLoss
  18. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  19. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  20. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  21. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  22. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  23. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from InformationLoss

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped