Object

ksb.csle.didentification.utilities

FrequencyManager

Related Doc: package utilities

Permalink

object FrequencyManager

This object manages the frequency of values in the specified column.

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. FrequencyManager
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  7. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  8. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  9. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  10. def getHighestFrequencyEntry(src: DataFrame, columnName: String): Any

    Permalink

    Gets the entry which has the highest frequency among the 'columnName' column in 'src' dataframe.

    Gets the entry which has the highest frequency among the 'columnName' column in 'src' dataframe.

    src

    Dataframe

    columnName

    Column to be investigated

    returns

    Any the column entry with highest frequency

  11. def getLeastFrequencyEntry(src: DataFrame, columnName: String): Any

    Permalink
  12. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  13. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  14. def makeBoxplotOutlierBasedFrequency(src: DataFrame, columnNames: Array[String]): Map[List[Any], Long]

    Permalink

    Same as makeBoxplotOutlierBasedFrequency(src, columnName), but the columns to be investigated are given by array of columns [less frequent 'array of element', the number of occurrences].

    Same as makeBoxplotOutlierBasedFrequency(src, columnName), but the columns to be investigated are given by array of columns [less frequent 'array of element', the number of occurrences].

    src

    Dataframe

    returns

    Map[List[Any], Long]

  15. def makeBoxplotOutlierBasedFrequency(src: DataFrame, columnName: String): Map[Any, Long]

    Permalink

    Same as makeZscoreOutlierBasedFrequency(src, columnName), but the method to discriminate outliers is boxplot.

    Same as makeZscoreOutlierBasedFrequency(src, columnName), but the method to discriminate outliers is boxplot. [less frequent element, the number of occurrences].

    src

    Dataframe

    columnName

    Column to be investigated

    returns

    Map[Any, Long]

  16. def makeFrequencyTable(src: DataFrame, columnNames: Array[String]): Map[List[Any], Long]

    Permalink
  17. def makeFrequencyTable(src: DataFrame, columnName: String): Map[Any, Long]

    Permalink

    Makes the frequency table which describes the frequencies of all elements of the 'columnname' column in src dataframe as a form of map [element, the number of occurrences].

    Makes the frequency table which describes the frequencies of all elements of the 'columnname' column in src dataframe as a form of map [element, the number of occurrences].

    src

    Dataframe

    columnName

    Column to be investigated

    returns

    Map[Any, Long]

  18. def makeZscoreOutlierBasedFrequency(src: DataFrame, columnNames: Array[String]): Map[List[Any], Long]

    Permalink

    Same as makeZscoreOutlierBasedFrequency(src, columnName), but the columns to be investigated are given by array of columns [less frequent 'array of element', the number of occurrences].

    Same as makeZscoreOutlierBasedFrequency(src, columnName), but the columns to be investigated are given by array of columns [less frequent 'array of element', the number of occurrences].

    src

    Dataframe

    returns

    Map[List[Any], Long]

  19. def makeZscoreOutlierBasedFrequency(src: DataFrame, columnName: String): Map[Any, Long]

    Permalink

    Firstly, get the frequency info about the 'columnName' column in 'src' dataframe.

    Firstly, get the frequency info about the 'columnName' column in 'src' dataframe. Based on the frequency, the less frequent tuples are described by z-score outlier method, and then return them. [less frequent element, the number of occurrences].

    src

    Dataframe

    columnName

    Column to be investigated

    returns

    Map[Any, Long]

  20. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  21. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  22. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  23. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  24. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  25. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  26. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  27. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from AnyRef

Inherited from Any

Ungrouped