교통센서로부터 시계열 속도 데이터를 수집한 후 전처리를 수행하고, 텐서플로우 기반 딥러닝 모델에 의해 예측된 속도를 클라이언트로 전달하는 예제를 설명합니다.
## 입력 데이터 준비하기
본 예제에서는 교통센서로부터 시계열 속도 데이터(LINK_ID, 속도, 날짜)를 Kafka로 입력 받는 것을 가정합니다. 5분 단위로 측정된 센서 데이터가 시간 순으로 들어온다고 가정합니다. 또한, <ahref="http://csleoss.etri.re.kr:8088/images/contents/manual_1.0/2.6.2.TrafficTraining.html">교통속도예측 텐서플로우 모델 학습하기</a> 매뉴얼에서 학습한 후 export 된 모델이 ``hdfs://csle1:9000/user/ksbuser_etri_re_kr/model/kangnam`` 위치에 저장되어 있다고 가정합니다.
본 예제에서는 교통센서로부터 시계열 속도 데이터(LINK_ID, 속도, 날짜)를 Kafka로 입력 받는 것을 가정합니다. 5분 단위로 측정된 센서 데이터가 시간 순으로 들어온다고 가정합니다. 또한, <ahref="https://etrioss.kr/thkimetri/ksb19.03-manual/blob/master/manual1903/2.6.2.TrafficTraining.html">교통속도예측 텐서플로우 모델 학습하기</a> 매뉴얼에서 학습한 후 export 된 모델이 ``hdfs://csle1:9000/user/ksbuser_etri_re_kr/model/kangnam`` 위치에 저장되어 있다고 가정합니다.
### 시계열 속도 스트림데이터 생성하기
본 예제를 위해 준비된 파일로부터 시계열 속도 데이터를 한줄씩 읽어 Kafka로 보내주는 파이썬 프로그램을 제공합니다.