bootStrapServer | csle1:9092 | Kafka 접속 주소(IP, 포트번호)
#####Controller
#####Controller
Controller 로는 WindowedSparkSessionOrStreamController 를 선택합니다. WindowedSparkSessionOrStreamController 는 스트림으로 입력되는 데이터를 큐에 저장하고, 일정 주기 마다 정해진 윈도우 크기로 잘라서 operator 에게 전달합니다.
field |value | 설명
--|---|--
...
...
@@ -53,7 +54,7 @@ inputQueSize | 1 | 입력 큐의 크기 | |
selectedColumnName | temperature | Spark dataframe에서 추출할 컬럼의 이름 | |
첫번째 엔진에서는 센서로부터 입력되는 온도 데이터를 여섯가지 전처리 기법을 적용하여 정제합니다. 본 예제에서 사용한 전처리 기법은 ColumnSelectOperator, MinMaxScalingOperator, TransposeOperator, SparkMLPredictOperator, MinMaxScalingOperator, ColumnSelectOperator 입니다.
- ColumnSelectOperator
...
...
@@ -125,11 +126,13 @@ field |value | 설명
selectedColumnId | 13 | 선택할 칼럼 ID
### 두 번째 엔진 생성하기
####엔진 선택
####엔진 선택
스트림 형태로 전달되는 온도 예측값의 온디맨드 서빙을 하기 위해 OnDemandStreamServing 엔진을 선택합니다. (KSB프레임워크에서는 도커 컨테이너 내부의 지식베이스(KB)가 실행되고 있습니다.)
#####Reader
##### Reader
첫번째 엔진에서 입력되는 실시간 온도 예측값을 입력 받기 위해 KafkaOnDemandReader 를 선택합니다.
ksbuser@etri.re.kr 계정으로 접속하면 예제 워크플로우가 만들어져있습니다. 불러오기해서도 돌려볼 수 있습니다.
##워크플로우 실행 및 모니터링하기
##워크플로우 실행 및 모니터링하기
### 워크플로우 실행하기
위에서 작성한 워크플로우를 실행하기 위해서는 워크플로우 편집기 상단의 실행 버튼을 누릅니다. 이 때, StreamToStream 엔진과 OnDemandStreamServing 엔진은 배치형태로 실행되지 않는 엔진들이므로 Batch 체크 박스는 해제하고 워크플로우를 제출해야합니다.
...
...
@@ -197,7 +201,7 @@ WorkFlow History 탭을 선택하면, KSB프레임워크에서 워크플로우
![워크플로우 동작 로그](./images/2.5.8_06.png)
##결과 확인하기
##결과 확인하기
#### 온도 스트림데이터 생성하기
워크플로우 실행 결과를 확인하기 위해서는 온도데이터를 스트림 형태로 발생시켜야 합니다. 이를 위해 위에서 설명한 Jmeter 도구를 활용합니다.